X-ray Spectroscopy of Low-Mass X-ray Binaries

Adrienne Juett

Massachusetts Institute of Technology

Collaborators:

Deepto Chakrabarty, Norbert Schulz, Duncan Galloway, Claude Canizares (MIT), Dimitrios Psaltis (Arizona), Joern Wilms (Warwick)

Outline

- Ultracompact LMXBs
 - What are Ultracompact binaries and why are they interesting?
 - Evidence for C-O white dwarf donors.
 - Caveats/Weak Points.
 - Interstellar Medium
 - Introduction to the ISM.
 - Motivation.
 - Determining the Model.
 - Identification of Absorption Features.
 - Studying the ISM.

Low-Mass X-ray Binaries

(Created using BinSim by R. Hynes)

Neutron Star or Black Hole + Companion of $\lesssim 1~M_{\odot}$ ~ 150 in the Galaxy with Orbital Periods: 11 min - 100s days Mass Transfer Primarily Through Roche Lobe Overflow Most have Featureless X-ray Continuum Emission

Ultracompact Binaries

- $P_{\rm orb} \lesssim 80 \ {\rm min}$
 - Require Hydrogen-deficient or degenerate companions
- 8 ultracompact LMXBs (out of 52 with $P_{\rm orb}$)
- 3 of 5 X-ray Millisecond Pulsars
- 2 of 5 Globular Cluster binaries with $P_{\rm orb}$
- ullet pprox8 additional candidate UC binaries with low $L_{
 m opt}/L_{
 m X}$ (van Paradijs & McClintock 1994)
- All but 1 of the known and all of the candidate UC binaries have confirmed NS primaries.

ASCA spectra of 4 LMXBs

Residuals from absorbed PL + BB model

Feature at 0.7 keV previously attributed to unresolved Fe/O emission lines

Chandra spectrum of 4U 0614+091

No emission lines

Ne/O ratio ≈ 1.25 (Ne/O in ISM = 0.18)

Alternative explanation for the 0.7 keV feature

Variable O and Ne absorption

Ne/O ratios 0.9–1.1 (Ne/O in ISM = 0.18)

Summary of 4U 1626–67 Results

- Ultracompact binary with $P_{\rm orb} = 42$ min.
- Oxygen and Neon emission lines found.
 (Angelini et al. 1995; Schulz et al. 2001)
- Emission lines resolved into Doppler shifted pairs with *Chandra*. (Schulz et al. 2001)
- Absorption edges from *Chandra* spectrum suggest local absorption with Ne/O ratio = 0.22.
 - much larger than expected for He WD.

Schulz et al. suggested that donor was the chemically fractionated core of a C-O or O-Ne-Mg white dwarf.

Interpretation of Unusual Ne/O ratio

4U 1850-087 is also ultracompact binary with $P_{\rm orb}=21$ min.

No orbital periods found for 4U 0614+091, 2S 0918-549, or 4U 1543-624.

All four sources have low $L_{\rm opt}/L_{\rm X}$ suggestive of ultracompact nature.

We suggested that all four sources were ultracompact and had Ne-rich donors similar to 4U 1626-67.

Grating Spectra of 2S 0918–549

RGS

Ne/O ratio 0.46 ± 0.03

HETG

Ne/O ratio 0.52 ± 0.12

Grating Spectra of 4U 1543-624

RGS

Ne/O ratio 0.54 ± 0.03

HETG

Ne/O ratio 1.5 ± 0.3

What do Chandra and XMM results mean?

Results confirm unusual Ne/O ratio, pointing to Ne-rich local material.

Variations in the ratio also strengthen suggestion that local material is present.

But variations seem to have relationship to broadband spectral properties of the source — ionization may be important.

Therefore, measured ratio not likely to be indicative of abundance of the local absorbing material.

Caveats/Weak Points

- Is the material local?
 No X-ray emission lines for most of the sources.
- ISM Properties
 - Neon abundance not well known.
 - Effect of dust grains or molecular species on derived abundances.
- Shape of Neon edge.
 Does this imply anything about the properties of the Neon?
- Ionization effects.
 How does local ionization of the material affect derived abundances?

Optical Results of Neon-Rich Sources

No Hydrogen or Helium emission lines seen

Only Carbon and Oxygen lines identified

4U 1543-624: $P_{\rm orb} = 18$ min. (Wang & Chakrabarty 2004)

Summary of UC Results

4U 1626-67

- Ne & O lines & absorption detected
- Point to C-O WD donor
- Optical/UV spectra back this up

Other sources

- ASCA spectra explained by high Ne/O
- High-resolution spectral evidence ?
- Optical spectra similar to 4U 1626-67

Not all UC Binaries have to be Ne-rich

XTE J0929-314, Juett, Galloway, & Chakrabarty 2003

Absorption consistent with interstellar origin

The Interstellar Medium

Contains Gas and Dust in both Diffuse Medium and Compact Clumps.

Diffuse Phases: Cold Neutral, Warm Neutral, Warm Ionized, & Hot Ionized

Emission Line Studies

- Radio studies: Hydrogen 21 cm, CO.
- Probe through the galaxy.

Absorption Line Studies

- Ultraviolet and Optical.
- Probe line of sight to source.
- Limited number of elements/ionization states.
- Limited in distance: $d \lesssim 2$ kpc.

Using X-ray Absorption Features

- Can probe to larger distances.
- Bandpass includes K-shell transitions of all elements from C to Fe.
- All ionization states available.
- Limited only by the strength of the features or sensitivity of the instrument.

Use X-ray binaries as sources. They are the brightest X-ray objects.

Motivation

Four studies of O edge have found different results (Paerels et al. 2001, Schulz et al. 2002, Takei et al. 2002, de Vries et al. 2003).

- Found 1–3 edges with positions from 22.58–23.13 Å.
- Found 1–2 absorption lines.
- All identified O I 1s-2p absorption line.

Standard absorption models (tbabs, phabs, wabs) do not have resolution comparable to the gratings on *Chandra* and *XMM*.

• Accurate absorption model necessary to understand source spectral properties

Modeling HETGS Spectra

- HETG: $\Delta \lambda = 0.023$ Å, highest resolution.
- Fit spectra of 7 X-ray sources.
- Used high-S/N data as template.
- Model includes 2 absorption edges and 5 Gaussian absorption lines.

Comparing Cross-Sections

- Old models no longer appropriate.
- New instruments can resolve structure in neutral O absorption.
- Expect features from ionized O as well.

Compared data with theoretical predictions from neutral and ionized O (Gorczyca & McLaughlin 2000, Pradhan et al. 2003).

Used O I 1s-2p absorption line as benchmark.

O I 1s-2p Line Positions

More accurate measurement of the position of this line than done in laboratory.

Identified Lines

Identified only neutral and ionized O features.

Column density measurements calculated at wavelength away from edge structure.

Curve of Growth — Neutral O

Data consistent with the low velocity dispersions found in other studies.

Curve of Growth — Ionized O

$$A = N_{\text{ionized}}/N_{\text{neutral}}$$

First measurement of large-scale ionization fraction in ISM.

Other Issues

- Instrumental Contribution
 - Instrumental absorption feature at 23.33 Å included in model of contaminant.
- Oxygen in Molecules/Dust
 - Place limits on amount of O in other forms: 10–40%.
 - Consistent with other determinations (Andrè et al. 2003).
- Local vs. ISM
 - Correlation between neutral column density and ionized EW suggests that to first order ionized lines are from ISM.
 - But some evidence for material local to the binary in Cyg X-1.

Future Work

- Sco X-1 high S/N observation
- Other elements Fe, Ne, Mg, Si
- ullet Expand range of $N_{
 m O}$ e.g., AGN
- Future Missions: Astro-E2, Constellation-X

Updating the Absorption Model

Added oxygen, neon, and iron theoretical cross-sections to tbabs model.

Testing/comparison to grating spectra underway.

Conclusions

Oxygen edges of X-ray binaries are well described by a model that includes neutral and ionized O features.

Velocity dispersions consistent with other measurements: $\lesssim 200 \text{ km s}^{-1}$.

Made the first measurements of the large-scale O II and O III abundance, relative to O I.

- O II/O I ≈ 0.1 , O III/O I $\lesssim 0.1$.
- Roughly consistent with expectations given H II/H I \approx 1/3.